
Creating Objects
Lecture 4

Robb T. Koether

Hampden-Sydney College

Mon, Sep 2, 2019

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 1 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 2 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 3 / 63



Drawing a Rectangle

In earlier versions of OpenGL, drawing a rectangle was quite
simple.

Announce that you were going to draw a rectangle:
glBegin(GL_RECT);

Pass the vertices one by one:
glVertex2f(0.0, 1.0)

Etc.

It is a bit more complicated now.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 4 / 63



Drawing a Rectangle

The three basic steps are
Create an array of vertex attributes (data).
Create a vertex buffer object (in the GPU).
Create a vertex array object (structures the buffer).
Issue the draw command.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 5 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 6 / 63



Vertex Attributes

Vertex Attributes
GLfloat rect_data[] =
{

-0.5f, -0.5f,
0.5f, -0.5f,
0.5f, 0.5f,
-0.5f, 0.5f

};
GLfloat triangle_data[] = {...};

In this first example, the only vertex attributes will be the
coordinates of the 2D vertices.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 7 / 63



Vertex Buffer Objects

Vertex Buffer Object

CPU GPU

rect_data

-0.5 -0.5 ... 0.5

triangle_data

-0.5 ... 0.5

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 8 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 9 / 63



Vertex Buffer Objects

A vertex buffer object (VBO) is a buffer (memory) in the GPU that
contains data related to the vertices of an object.

Coordinates of the vertices.
Their color.
Normal vectors.
Etc.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 10 / 63



Vertex Buffer Objects

To use a VBO, we must do three things.
Generate a name (ID number) for the buffer object.
“Bind” a buffer object to the name, i.e., associate the ID number
with the buffer object and make it the current (or active) buffer.
Copy the vertex data to the buffer object.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 11 / 63



Vertex Buffer Objects

Symbolic Names for the VBOs
enum {RectBuffer, TriangleBuffer, NumVBOs};

The enum statement will assign the values 0, 1, and 2 to
RectBuffer, TriangleBuffer, and NumVBOs, respectively.
Note that value of numVBOs will automatically be the number of
buffer objects.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 12 / 63



Vertex Buffer Objects

Vertex Buffer Object

RectBuffer = 0
TriangleBuffer = 1
NumVBOs = 2

CPU GPU

rect_data

-0.5 -0.5 ... 0.5

triangle_data

-0.5 ... 0.5

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 13 / 63



Vertex Buffer Objects

Array of VBO IDs
GLuint VBO[NumVBOs];

The array VBO will contain the ID numbers (to be assigned by
OpenGL) of the buffer objects.
The enums RectBuffer and TriangleBuffer are symbolic
names for the indexes of the IDs in the array VBO.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 14 / 63



Vertex Buffer Objects

Vertex Buffer Object

RectBuffer = 0
TriangleBuffer = 1
NumVBOs = 2

VBO

0 1

CPU GPU

rect_data

-0.5 -0.5 ... 0.5

triangle_data

-0.5 ... 0.5

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 15 / 63



Vertex Buffer Objects

Vertex Buffer Object
glGenBuffers(NumVBOs, VBO);

Generate ID numbers for each of the buffers and store them in
VBO[0] and VBO[1], also known as VBO[RectBuffer] and
VBO[TriangleBuffer].

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 16 / 63



Vertex Buffer Objects

Vertex Buffer Object

RectBuffer = 0
TriangleBuffer = 1
NumVBOs = 2

VBO

0 1

CPU GPU

rect_data

-0.5 -0.5 ... 0.5

triangle_data

-0.5 ... 0.5

7 12

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 17 / 63



Vertex Buffer Objects

Vertex Buffer Object
glBindBuffer(GL_ARRAY_BUFFER, VBO[RectBuffer]);

glBindBuffer() binds (associates) the buffer ID
VBO[RectBuffer] to a new buffer object in the GPU and makes
that buffer object the current buffer.
When glBindBuffer() is called subsequently with the same
buffer ID, it simply makes that buffer object the current one.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 18 / 63



Vertex Buffer Objects

Vertex Buffer Object

RectBuffer = 0
TriangleBuffer = 1
NumVBOs = 2

VBO

0 1

CPU GPU

rect_data

-0.5 -0.5 ... 0.5

triangle_data

-0.5 ... 0.5

7 12

Uninitialized Buffer Object

Uninitialized Buffer Object

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 19 / 63



Vertex Buffer Objects

Vertex Buffer Object
glNamedBufferStorage(VBO[RectBuffer],

sizeof(rect_data), rect_data, 0);

glNamedBufferStorage() copies the data from rect_data
into the named buffer (VBO[RectBuffer]).

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 20 / 63



Vertex Buffer Objects

Vertex Buffer Object

RectBuffer = 0
TriangleBuffer = 1
NumVBOs = 2

VBO

0 1

CPU GPU

rect_data

-0.5 -0.5 ... 0.5

triangle_data

-0.5 ... 0.5

-0.5 -0.5 ... 0.5

-0.5 ... 0.5

7 12

Initialized Buffer Object

Initialized Buffer Object

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 21 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 22 / 63



Vertex Array Objects

A vertex array object (VAO) describes the structure imposed on
the data stored in the buffer object.
We follow a similar pattern with VAOs as we did with VBOs.
To use a VAO, we must do three things.

Generate an ID number for the vertex array object.
“Bind” that vertex array object to the active buffer object.
Describe the structure (i.e., attributes) of the data in the buffer.
Enable the vertex attributes.

Then we are ready to draw the object.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 23 / 63



Vertex Array Objects

Symbolic Names for the VAOs
enum {Rect, Triangle, NumVAOs};
enum {vPosition = 0};

We use an enumerated type to create symbolic names for the
VAOs.
We also use an enumerated type to create symbolic names for the
vertex attributes.
In this example, the only attribute is the position.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 24 / 63



Vertex Array Objects

Array of VAO IDs
GLuint VAO[NumVAOs];

Create an array of vertex array objects.
As with the VBOs, this array will hold the ID number of the VAOs
in the GPU.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 25 / 63



Vertex Array Objects

Vertex Array Object
glBindVertexArray(VAO[Rect]);

glBindVertexArray() will create vertex array objects in the
GPU and store their IDs in the VAO array.
This statement will store the ID for the rectangle VBO in VAO[0].
It is necessary that VBO[RectBuffer] be the current VBO.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 26 / 63



Vertex Array Objects

Vertex Array Object
glVertexAttribPointer(vPosition, 2, GL_FLOAT,

GL_FALSE, 0, BUFFER_OFFSET(0));

This statement associates the attribute ID vPosition (i.e., 0)
with the following information.

The 2 indicates the number of objects that constitute a single
attribute (2 floats = a 2D point).
GL_FLOAT tells the type of object in the attribute.
GL_FALSE tells the GPU not to “normalize” the data (more on that
later).
the 0 is the stride, i.e., the number of bytes to skip over from one
attribute value to the next. The value 0 means that the data are
packed.
BUFFER_OFFSET(0) gives the offset, in bytes, to the first attribute
value.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 27 / 63



Vertex Array Objects

Vertex Array Object
glVertexAttribPointer(vPosition, 2, GL_FLOAT,

GL_FALSE, 0, BUFFER_OFFSET(0));

This statement associates the attribute ID vPosition (i.e., 0)
with the following information.

The 2 indicates the number of objects that constitute a single
attribute (2 floats = a 2D point).

GL_FLOAT tells the type of object in the attribute.
GL_FALSE tells the GPU not to “normalize” the data (more on that
later).
the 0 is the stride, i.e., the number of bytes to skip over from one
attribute value to the next. The value 0 means that the data are
packed.
BUFFER_OFFSET(0) gives the offset, in bytes, to the first attribute
value.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 27 / 63



Vertex Array Objects

Vertex Array Object
glVertexAttribPointer(vPosition, 2, GL_FLOAT,

GL_FALSE, 0, BUFFER_OFFSET(0));

This statement associates the attribute ID vPosition (i.e., 0)
with the following information.

The 2 indicates the number of objects that constitute a single
attribute (2 floats = a 2D point).
GL_FLOAT tells the type of object in the attribute.

GL_FALSE tells the GPU not to “normalize” the data (more on that
later).
the 0 is the stride, i.e., the number of bytes to skip over from one
attribute value to the next. The value 0 means that the data are
packed.
BUFFER_OFFSET(0) gives the offset, in bytes, to the first attribute
value.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 27 / 63



Vertex Array Objects

Vertex Array Object
glVertexAttribPointer(vPosition, 2, GL_FLOAT,

GL_FALSE, 0, BUFFER_OFFSET(0));

This statement associates the attribute ID vPosition (i.e., 0)
with the following information.

The 2 indicates the number of objects that constitute a single
attribute (2 floats = a 2D point).
GL_FLOAT tells the type of object in the attribute.
GL_FALSE tells the GPU not to “normalize” the data (more on that
later).

the 0 is the stride, i.e., the number of bytes to skip over from one
attribute value to the next. The value 0 means that the data are
packed.
BUFFER_OFFSET(0) gives the offset, in bytes, to the first attribute
value.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 27 / 63



Vertex Array Objects

Vertex Array Object
glVertexAttribPointer(vPosition, 2, GL_FLOAT,

GL_FALSE, 0, BUFFER_OFFSET(0));

This statement associates the attribute ID vPosition (i.e., 0)
with the following information.

The 2 indicates the number of objects that constitute a single
attribute (2 floats = a 2D point).
GL_FLOAT tells the type of object in the attribute.
GL_FALSE tells the GPU not to “normalize” the data (more on that
later).
the 0 is the stride, i.e., the number of bytes to skip over from one
attribute value to the next. The value 0 means that the data are
packed.

BUFFER_OFFSET(0) gives the offset, in bytes, to the first attribute
value.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 27 / 63



Vertex Array Objects

Vertex Array Object
glVertexAttribPointer(vPosition, 2, GL_FLOAT,

GL_FALSE, 0, BUFFER_OFFSET(0));

This statement associates the attribute ID vPosition (i.e., 0)
with the following information.

The 2 indicates the number of objects that constitute a single
attribute (2 floats = a 2D point).
GL_FLOAT tells the type of object in the attribute.
GL_FALSE tells the GPU not to “normalize” the data (more on that
later).
the 0 is the stride, i.e., the number of bytes to skip over from one
attribute value to the next. The value 0 means that the data are
packed.
BUFFER_OFFSET(0) gives the offset, in bytes, to the first attribute
value.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 27 / 63



Vertex Array Objects

Enable the Attribute
glEnableVertexAttribArray(vPosition);

This statement makes the attribute with index vPosition (i.e., 0)
active.
The values will be available in the shader programs.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 28 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 29 / 63



Drawing the Object

Drawing the Objectbject
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);

Invoke the glDrawArrays() function, with parameters
The type of object to draw (e.g., GL_TRIANGLE_FAN).
The starting index in the array.
The number of vertices.

This example will draw a rectangle.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 30 / 63



Drawing the Object

There are several types of objects to draw.
Primitives

GL_POINTS – individual points
GL_LINES – line segments
GL_TRIANGLES – triangles

Nonprimitives
GL_LINE_STRIP – line segments joined in sequence
GL_LINE_LOOP – line segments joined in a circuit
GL_TRIANGLE_FAN – triangles fanning out from a base point
GL_TRIANGLE_STRIP – triangles forming a strip

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 31 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 32 / 63



Color

In computer graphics, every color has three components.
Red
Green
Blue

Any specific color is represented by a triple (r ,g,b), with each
component between 0.0 and 1.0.
The RGB values are clamped to the range [0,1].

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 33 / 63



Color

Black
(0, 0, 0)

Green
(0, 1, 0)

Red
(1, 0, 0)

Blue
(0, 0, 1)

Magenta
(1, 0, 1)

Yellow
(1, 1, 0)

Cyan
(0, 1, 1)

White
(1, 1, 1)

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 34 / 63



Color

Black

Blue

Red

Green

Blue

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 35 / 63



Color

What RGB triple would appear gray?

Orange?
Brown?
Pink?
Beige?
Garnet?

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 36 / 63



Color

What RGB triple would appear gray?
Orange?

Brown?
Pink?
Beige?
Garnet?

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 36 / 63



Color

What RGB triple would appear gray?
Orange?
Brown?

Pink?
Beige?
Garnet?

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 36 / 63



Color

What RGB triple would appear gray?
Orange?
Brown?
Pink?

Beige?
Garnet?

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 36 / 63



Color

What RGB triple would appear gray?
Orange?
Brown?
Pink?
Beige?

Garnet?

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 36 / 63



Color

What RGB triple would appear gray?
Orange?
Brown?
Pink?
Beige?
Garnet?

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 36 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 37 / 63



Coloring a Rectangle

To color a rectangle, we need to include the color data in the
buffer along with the vertex coordinates.
There are several ways to do this.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 38 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 39 / 63



One Array, Segregated Attributes

One Array, Segregated Attributes
GLfloat rect_data[] =
{

-0.5f, -0.5f, // 1st vertex
0.5f, -0.5f, // 2nd vertex
0.5f, 0.5f, // 3rd vertex

-0.5f, 0.5f, // 4th vertex
1.0f, 0.0f, 0.0f, // Color of 1st
1.0f, 1.0f, 0.0f, // Color of 2nd
0.0f, 1.0f, 0.0f, // Color of 3rd
0.0f, 0.0f, 1.0f // Color of 4th

};

We can pack all the data contiguously into one array, with the
attributes segregated.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 40 / 63



One Array, Segregated Attributes

Buffer Object

pos color

vertex 0

pos pos pos color color color

vertex 1 vertex 2 vertex 3 vertex 0 vertex 1 vertex 2 vertex 3

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 41 / 63



Color a Rectangle

Color a Rectangle
enum {vPosition = 0, vColor = 1};

Create a symbolic name for the color attribute.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 42 / 63



Color a Rectangle

Color a Rectangle
glNamedBufferStorage(VBO[RectBuffer], sizeof(rect_data),

rect_data, 0);

Store the data in the buffer and bind the vertex array object, as
before.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 43 / 63



Color a Rectangle

Color a Rectangle
glBindVertexArray(VAOs[Rect]);
glVertexAttribPointer(vPosition, 2, GL_FLOAT, GL_FALSE,

0, BUFFER_OFFSET(0));
glVertexAttribPointer(vColor, 3, GL_FLOAT, GL_FALSE,

0, BUFFER_OFFSET(8*sizeof(GLfloat)));

Set the position attribute as before.
Give the color attribute an offset equal to the size of the position
data.
Both attributes have a stride of 0.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 44 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 45 / 63



Two Arrays, Segregated Attributes

Two Arrays, Segregated Attributes
GLfloat rect_pos[] =
{

-0.5f, -0.5f, // 1st vertex
0.5f, -0.5f, // 2nd vertex
0.5f, 0.5f, // 3rd vertex

-0.5f, 0.5f // 4th vertex
};
GLfloat rect_color[] =
{

1.0f, 0.0f, 0.0f, // Color of 1st
1.0f, 1.0f, 0.0f, // Color of 2nd
0.0f, 1.0f, 0.0f, // Color of 3rd
0.0f, 0.0f, 1.0f // Color of 4th

};

We can create two separate arrays, with the attributes necessarily
segregated.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 46 / 63



One Array, Segregated Attributes

Buffer Object

pos color

vertex 0

pos pos pos color color color

vertex 1 vertex 2 vertex 3 vertex 0 vertex 1 vertex 2 vertex 3

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 47 / 63



Two Arrays, Segregated Attributes

Two Arrays, Segregated Attributes
glNamedBufferStorage(VBO[RectBuffer], sizeof(rect_pos)

+ sizeof(rect_color), NULL, 0);
glNamedBufferSubData(VBO[RectBuffer], 0, sizeof(rect_pos),

rect_pos);
glNamedBufferSubData(VBO[RectBuffer], sizeof(rect_pos),

sizeof(rect_color), rect_color);

We must first reserve the memory and then separately store the
two arrays using glNamedBufferSubData().

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 48 / 63



Two Arrays, Segregated Attributes

Two Arrays, Segregated Attributes
glBindVertexArray(VAOs[Rect]);
glVertexAttribPointer(vPosition, 2, GL_FLOAT, GL_FALSE,

0, BUFFER_OFFSET(0));
glVertexAttribPointer(vColor, 3, GL_FLOAT, GL_FALSE,

0, BUFFER_OFFSET(sizeof(rect_pos)));

Set the position attribute as before.
Give the color attribute an offset equal to the size of the position
data.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 49 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 50 / 63



One Array, Integrated Attributes

One Array, Integrated Attributes
GLfloat rect_data[] =
{

-0.5f, -0.5f, 1.0f, 0.0f, 0.0f, // 1st vertex
0.5f, -0.5f, 1.0f, 1.0f, 0.0f, // 2nd vertex
0.5f, 0.5f, 0.0f, 1.0f, 0.0f, // 3rd vertex

-0.5f, 0.5f, 0.0f, 0.0f, 1.0f // 4th vertex
};

We can create one array, with the attributes integrated.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 51 / 63



One Array, Integrated Attributes

pos

Buffer Object

color

vertex 0

pos color

vertex 1

pos color

vertex 2

pos color

vertex 3

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 52 / 63



One Array, Integrated Attributes

One Array, Integrated Attributes
glNamedBufferStorage(VBO[RectBuffer], sizeof(rect_data),

rect_data, 0);

Store the data in the buffer and bind the vertex array object, as
before.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 53 / 63



One Array, Integrated Attributes

One Array, Integrated Attributes
glBindVertexArray(VAOs[Rect]);
glVertexAttribPointer(vPosition, 2, GL_FLOAT, GL_FALSE,

5*sizeof(GL_FLOAT), BUFFER_OFFSET(0));
glVertexAttribPointer(vColor, 3, GL_FLOAT, GL_FALSE,

5*sizeof(GL_FLOAT), BUFFER_OFFSET(2*sizeof(GLfloat)));

Set the position attribute as before.
Give the color attribute an offset equal to the size of a position.
Give the position and color a stride equal to the size of the data for
a vertex.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 54 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 55 / 63



One Array, Structured Data

One Array, Structured Data
struct VertexData2D
{

GL_FLOAT pos[2];
GL_FLOAT color[3];

};

Create a VertexData2D structure.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 56 / 63



One Array, Structured Data

One Array, Structured Data
struct VertexData2D
{

vec2 pos;
vec3 color;

};

Create a VertexData2D structure.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 57 / 63



One Array, Structured Data

One Array, Structured Data
VertexData2D rect_data[] =
{

{{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}}, // 1st vertex
{{ 0.5f, -0.5f}, {1.0f, 1.0f, 0.0f}}, // 2nd vertex
{{ 0.5f, 0.5f}, {0.0f, 1.0f, 0.0f}}, // 3rd vertex
{{-0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}} // 4th vertex

};

We can create one array of type VertexData2D.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 58 / 63



One Array, Structured Data

pos

Buffer Object

color

vertex 0

pos color

vertex 1

pos color

vertex 2

pos color

vertex 3

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 59 / 63



One Array, Integrated Attributes

One Array, Integrated Attributes
glNamedBufferStorage(GL_ARRAY_BUFFER, sizeof(rect_data),

rect_data, 0);

Store the data in the buffer and bind the vertex array object, as
before.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 60 / 63



One Array, Integrated Attributes

One Array, Integrated Attributes
glBindVertexArray(VAOs[Rect]);
glVertexAttribPointer(vPosition, 2, GL_FLOAT, GL_FALSE,

sizeof(VertexData2D), BUFFER_OFFSET(0));
glVertexAttribPointer(vColor, 3, GL_FLOAT, GL_FALSE,

sizeof(VertexData2D),
BUFFER_OFFSET(sizeof(vec2)));

Set the position attribute as before.
Give the color attribute an offset equal to the size of a position.
Give the position a stride equal to the size of a color.
Give the color a stride equal to the size of a position.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 61 / 63



Outline

1 Drawing a Rectangle
Vertex Attributes
Vertex Buffer Objects
Vertex Array Objects
Drawing the Object

2 Color

3 Coloring a Rectangle
One Array, Segregated Attributes
Two Arrays, Segregated Attributes
One Array, Integrated Attributes
One Array, Structured Data

4 Assignment

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 62 / 63



Assignment

Assignment
Read pp. 16 - 22 in The Red Book.

Robb T. Koether (Hampden-Sydney College) Creating Objects Mon, Sep 2, 2019 63 / 63


	Drawing a Rectangle
	Vertex Attributes
	Vertex Buffer Objects
	Vertex Array Objects
	Drawing the Object

	Color
	Coloring a Rectangle
	One Array, Segregated Attributes
	Two Arrays, Segregated Attributes
	One Array, Integrated Attributes
	One Array, Structured Data

	Assignment

